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Macroscopic models of radiative transfer as
applied to computation of the radiation field in
the solar atmosphere

By J.-F. Ripoll, A. A. Wray

1. Motivation and objectives

The two stream method, also called the two-flux approximation, distinguishes between
incoming and outgoing radiation for improved accuracy relative to one-stream methods
while retaining reduced numerical cost relative to full RTE solutions (Mihalas & Mihalas
1984; Siegel & Howell 2001). It assumes different radiation from each source, each uni-
form over its half-space, which constitutes the weak point of the method.

This concept has recently been used by Dubroca & Klar (2002), where they derive a
unidimensional macroscopic moment radiation model for each stream; they call this a
half moment model. The pressure closure is obtained by using maximization of entropy
(Minerbo 1978), which allows them to avoid any isotropic assumption about the radiative
intensities.

In this paper a new three dimensional half-moment model for radiative transfer is pre-
sented for a gray medium. It describes the evolution of the zeroth and first directional
half moments of the radiative intensity. The closure is provided, similarly to Dubroca
& Klar (2002), by the maximum entropy concept. This work generalizes that model to
three dimensions.

The splitting of the direction of propagation €2 into two pieces, Q1 and Q~, in Dubroca
& Klar (2002) was done by cutting the €2-space in a static sense, meaning that the same
definition of + and — was used at all points in the domain. This direction splitting is
clearly the best, at least the most intuitive one, for unidimensional problems, but this is
not necessarily true for multi-dimensional problems. As a matter of fact, and in contrast,
the splitting is here done dynamically according to the direction of the total radiative flux
at each point. At any point of the domain, our model considers that the radiative flux
defines the main direction of propagation, the positive direction 27, and a negative one,
in the opposite direction, 7. This dynamic way of splitting the domain of directions
appears to be a natural one for multidimensional problems.

This particular choice for the splitting also allows the pressure model to be analytically
computed, which is not the case for a static definition of the half moments. However, it
does have a very unfortunate consequence: since the half spaces Q1 and Q~ are depen-
dent on the radiative flux, they become variable in time and space. The integration of
the radiative transfer equation (RTE) over these subspaces is then complicated. Never-
theless, if the radiation is assumed isotropic in the plane perpendicular to the direction
of propagation, which we believe is a reasonable assumption for a two-direction model,
the integration of the RTE over these spaces can be done. Unfortunately, the integration
introduces unclosed border terms involving the intensity in this plane. A closure will then
be provided below by a model for this intensity.

In order to derive the radiative pressure tensor and then to be able to close the system,
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a further assumption is necessary: the positive component of the flux is assumed to be
nearly parallel to the total flux, the negative one becoming then necessarily anti-parallel.
This is obviously true in one dimension, but not in general, and constitutes our main
assumption in the pressure derivation. It holds nevertheless exactly in two important
limits: at radiative equilibrium and for strongly anisotropic radiation.

The model presented here (the derivation being done in Ripoll & Wray (2003)), called

the ]\/[11 /2 model, is a hyperbolic system consisting of a total of eight equations in three
dimensions, four equations for each direction. Each half model has the classical form of
a macroscopic moment model in which the pressure tensor is constructed from the well-
known Eddington tensor with a particular Eddington factor. Moreover, different source
and border terms occur. The latter introduce couplings between the macroscopic and
microscopic quantities and between the + and — streams, through the intensity in the
plane perpendicular to the flux.

One of the major advantages of this model is that independent incoming and outgoing
boundary conditions are allowed, which is not possible with full moment models. More-
over, the flux stays limited by the speed of light and the underlying intensity, which can
always be deduced from the macroscopic quantities. The flux is described by a Planck
function at radiative equilibrium or by one (or two) Dirac function(s) in one (or two)
direction(s) of propagation in the anisotropic limit(s). Furthermore, the maximum en-
tropy closure, which has been often applied to radiative transfer (see for instance (Ripoll
2004)) will be shown as a very useful and powerful concept allowing the derivation of
new accurate, well-defined, and robust models.

The main theoretical application of the half moment model, treated in this paper, is its
reduction to a full moment model, called M 1+ , for the particular but important case of a
hot, opaque source radiating in a cold transparent (or semi-transparent) medium for very
specific applications, such as stellar interiors or atmospheres, or combustion problems.
This model consists of four equations and is derived from the half moment model with
fairly simple arguments. The model is tested on a simple test case for different values
of the opacity and will be shown to give very good results, better than those obtained
from either the P; or M, closures. For all problems presented in this paper, the solutions
obtained by the new models are compared with those obtained by using a ray-tracing
solver of the RTE. It will be shown numerically, partially here and mostly in Ripoll &
Wray (2003), that the M;" model constitutes an improvement of the existing closures
and may be particularly useful for treating radiation in stellar interiors or atmospheres.

The problem of a modeled solar atmosphere, in which the opacity is roughly approx-
imated by that at a wavelength of 500nm (Vernazza et al. 1981), will be solved and
discussed. The radiation field is obtained from the Mfr model at reasonable accuracy.

The structure of the paper is as follows. In section 2, the model M 11 /% s presented. In
section 3, for the particular case of a hot, opaque source radiating into a cold medium,
the half moment model is reduced to the M, model. In section 4, we first solve a simple
and academic problem to validate the models, followed by a simplified solar atmosphere.
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2. The Half-Moment Model
2.1. The radiative transfer equation

The radiative transfer equation in an non-scattering, emitting, and absorbing gray medium
is given by

1&[ +Q-VI=0Bv,T)—ol, (2.1)
c

where the intensity I = I(t,r, Q,v) is a function of the time ¢, the position r, the direction
of propagation € and the frequency v. The Planck radiative intensity B describes the
isotropic emission of the medium at frequency v and temperature T'. Here c is the velocity
of light and o, the spectral absorption coeflicient or opacity, is assumed to be independent
of v. By integrating the RTE over frequency and introducing the quantity J(¢,r, Q) =
fooo I(t,r,Q,v)dv = (1), 1, we obtain

1
S0 +Q-VJ = ?T“ — o, (2.2)
C

™

where the constant a is given by a = (875k*)/(15h3c?).

2.2. Derivation of the Half-Moment Model

Two half spaces, defined by the direction of propagation of the radiation, are introduced,
splitting the domain € into 2 disjoint pieces, Q1 and 7, such that 2 = QT U Q™
QTN =0, and

O = () F/Fr-Q >0}, (23)
Qiz{Q/FR/FR'Q<O}, (24)

where Fp designates the radiative flux and Fpg its normi. Q% are then two unit half
spheres, obtained by cutting the sphere € by the plane perpendicular to the flux vector
Fr, P, ={Q /Fr-Q=0}.

The three first moments, Er, Fgr, and Ppg, respectively the radiative energy, flux
vector and pressure tensor, of the radiative intensity I according to the frequency and
the direction are defined by

1 1
ER:E<J>Q Fr=(QJ)q, PR:E<Q®QJ)Q, (2.5)
In a similar way, the half moments Egr*, Fﬁ, and Pﬁ are defined by
1 1
ERi:E<J>Qi, Fi=(QJ)g, Pj};:E(Q@QJ)Qi, (2.6)

By construction, the following properties hold
Er=FEr" +Egr~, Fr=F}+Fy, Pr=P}+Pp. (2.7)

Three unit vectors of propagation n, n™, n~ are defined according to the direction of
the radiative flux and half fluxes:

n:FR/FR7 n+:FE/FI_§> n_:F}_Q/Flgv (28)

It is assumed herein that the positive component of the flux can be taken to be approx-
imately parallel to the flux itself, n* ~ 4n (hypothesis H1). This assumption is true

T We will denote the integration of a function f over the variables X, Y, Z as ( f)x,v,z
1 for the sake of brevity, the norm of a vector v will be always denoted as v.
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when the radiation is isotropic or strongly anisotropic but is less accurate in intermediate
cases. As a consequence of the previous definitions, the negative component of the flux
then becomes anti-parallel to the flux F . The previous relationship among the radiative
fluxes can then be rewritten as

Fr=Fgint+Fyn ~Fin— Fyn. (2.9)

Integrating the radiative transfer equation (2.2) over each half direction 2%, leads to

1
HJdQ+ [ Q-VJdQ = §coaT4 —coELE. (2.10)
QF QF

Multiplying the radiative transfer equation (2.2) by €2 and integrating over the half
directions Q% leads to

1 1
- 02T dQ2 + c/ QRQ-VJdQ = anaT‘*ni —oF%. (2.11)

C Jo+ Ot

The two subspaces QF have been chosen in order to partition the domain in a physically
natural way and to allow the radiative pressure to be closed (see section 2.3). But the
partitioning causes the bounds of integration over Q% to depend on the flux and hence
on v, 2,t, and so disallows commuting derivatives and integrals over Q%. Nevertheless,
it has been possible to perform these integrals. The following relationships hold provided
that the radiation is assumed to be isotropic in the plane perpendicular to the direction
of the flux (hypothesis H2), for example if described or modeled by a radiative intensity
I, such as that in the next section.

0, dQY ~ O, EF, (2.12)
Q=+
/ Q-VJdQ~V -FE —7J, V- -nF, (2.13)
Q=+
0T dQ ~ 0,FE — 2 on*, (2.14)
Q=* C
Q2Q-VJdQ V. PL (2.15)

[eE=

where J; = (I.),. These relationships are derived in Ripoll & Wray (2003) using as-
sumption (H2) which leads to canceling of two of the border terms in (2.12) and in

(2.15) and to a simple form of (2.13) and (2.14). Thus, the Mll/2 model is given in three
dimension by

1
8tE1j§ +V. F§ — 7,V -nt = icaaT4 — CUE]%, (2.16)
1 1
S0 FE — ZJ omT 40V . PE = Jeoal'n* —oFF. (2.17)
C C

The closure of the model will be provided by models for the radiative pressure and J
in the next section.
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2.3. Closure of the Half-Moment Model
2.3.1. A model for the pressure

A special radiative intensity I* with the following form is chosen

. . 2hy? hv -t
I*(t,r,Qv) = I(T*(t,r,Q),v) = 2 [exp (sz*) - 1] , (2.18)
in which
T*(t,r, Q) = L (2.19)
B - B(1-A-Q) '
and where A and B are defined on Q7 and 2~ as follows
Atnt on n-Q2>0 Bt on n- Q>0
A= and B = . (2.20)
A"n~ on n-Q2<0 BT on n-Q2<0

This intensity, determined by the so-called maximum entropy closure, provides a way
to close the radiative pressure P r by approximating it with P%, computed from I*. This
constitutes the third and last assumption (H3) used here to derive the M 11 /% model.

If the scalar B and the vector A are defined from the two constraints Er = (I*),, o and
Fr = (QI"), o, then the intensity I*, defined in (2.18), maximizes the radiative entropy
under these constraints (Minerbo 1978). The subdivision into 21 and €~ does not change
this property, and as a direct consequence of (2.7) we have that the restricted intensities
Ijq+ maximize the radiative entropy under the constraints ErT = *),.q+ and FE =
(I *>u,ﬂi' Unfortunately, it is not possible to obtain a closed form for the pressure using
these constraints directly; instead we use H1 to approximate the constraints as follows

(I"(0%)), g = (I (EM)), qr  and  (I'(n*)), o0 ~ QI (En)), g0, (2:21)

The abbreviated notation I*(n%) is used to denote I* as defined using A in (2.20), and
I*(£n) denotes I* using instead

A=A"Tn"~A"™n on n-Q>0 ; A=An ~-A"n on n-N<0, (2.22)

which corresponds to the use of H1 in the definition (2.20). The computation of A, from
now approximated by (2.22), and B is shown in done in Ripoll & Wray (2003). Actually,
the assumption H1 was not needed before this point of the derivation.

The radiative pressure tensor Plj; is approximated by Pﬁ*, computed in Ripoll & Wray
(2003), and is written

P}g:/ QR QJIQ ~ Q®QJ*(ni)dQ:P§*:/ Q ® QJ*(+n) dQ
Q* Q* Q*

~ Py(f%, BEr®) = DL ER™ = DR(f5)Ex™

where Dﬁ has the form of the well-known Eddington tensor evaluated for an anisotropy
£+ = FL/(cER™), given by
1—x(f* 3(fE) -1 = @ f*
+_ w1 =x(%) x(f%) ®
D7 =Dg(f )_fld—&- 5 2

, (2.23)
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in which the Eddington factor y is
8+

if f¥>0.5and x(f*) = 1/3 elsewhere.
146 % +/1+ 127+ —12 2

X(fF) =

(2.24)
There is then no coupling between outgoing and incoming radiation in the pressure model.
The isotropic and anisotropic limits (f — 0 and f — 1) of the model, which define its
range of validity are discussed in Ripoll & Wray (2003). The corresponding range of f=+
is [1/2,1]; this range will hold numerically as well if the limitation on the Eddington
factor y is enforced as in (2.24), but not otherwise. The Eddington factor is hence in
total agreement with the domain of definition of f*. Without this limitation on y, f*
lower than 1/2 implies a radiative intensity defined, problematically, in terms of an A
with a negative norm.

2.3.2. A model for I, and J|

The radiative intensity I*, which has been used to derive mean absorption coefficient
(Ripoll et al. 2001), can be used as well to model the border terms coming from the
integration, since I* is isotropic in the plane perpendicular to the flux and we have

2hv3 hvT -t
ﬁi‘?‘kmﬁﬁﬁ)q , (2.25)
since A*-Q =0 for @ € P, and B* is given in Ripoll & Wray (2003). I* * is a Planck
function evaluated in Tf{ when radiation are isotropic and vanishes when radiation are
anisotropic in the direction of the flux. The main problem of this model is that the
intensity is reconstructed from the plus and minus macroscopic quantities. There is then
two intensities j‘_i, which should have the same value in P, , but nothing can guaranteed
it. The definition of I} in P, in then not obvious and we propose simply an average of
the two values I j‘_i.

I* + s~ * + —
P o A S A S P e (2.26)
2 2
where JIi is given by
4
PRSI (EYS .
L 4xBEt T 4Am 3 - 3A% 4 A%?
3
(1-in4—N/—12fi2—F12fi—+1)>
= Ty 2.28
B 167ra R > ) (2.28)
fi(Gfi—+14%x/412fi +12f% +1)
in is a function of Tlf and f* which decrease from their isotropic values Jiiiso =
« Faniso

aT§4 /27 (note that J* Y = a7 /47 at equilibrium) to their anisotropic values J* =
0. Moreover, it can be seen that J¥"* = Eg/4r could constitute a rough model for J .
One could think the average (2.26) is arbitrary and any average of the form J} ~
(aJt ™ +bJ%7)/(a + b) could have been chosen. Actually, @ = 1 and b = 1 is the only
combination allowing the model (2.26) to get the exact isotropic value J, = Er/(4m) =
(Ef + Ez)/(47). (The demonstration is obvious using (2.28) with f* — 1/2 in (2.26)).
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Finally, the 8 equations in three dimension of the M 11 /2 model are

1
HEE +V-Ff —nJiV-nt = eoal™ - coE3, (2.29)
1 1
SO FE — Tt om® 4 ¢V - (Da(f%) Ert) = Jeoal n® — oFF, (2.30)
C (&

and have been derived using the three assumptions H1, H2, and H3. The positive and
negative quantities are then only coupled by the model for Ji given in (2.26)-(2.28),
which constitutes the last approximation, and when the full moment are reconstructed.

3. A new 3D moment model for a hot opaque medium emitting in a cold
medium

From the half moment model, a new moment model is derived for a particular, but
nevertheless important, case: a hot opaque source emitting in a cold medium. It can
be seen in (2.29)-(2.30) that the non-linearity of the radiative pressure does not allow
reducing a closed full moment model from the sum of the two half-moment models in
the general case. As a matter of fact, this sum leads to

OFERr+V -Fr = coaT* — coEg, (3.1)
1
EatFR +cV - (DrR(ENERT + Dr(f7)Er™) = —0Fp, (3.2)

where the border terms have canceled when added, as did the half emission terms of the
flux equations, and where a pressure remains which is expressed in terms of unclosed
quantities.

From this system, it is however possible to reconstruct a full closed moment model in
the particular case of a hot, opaque opaque source emitting in a cold, transparent (or
semi-transparent) medium. We will discuss at the end of this section how the source and
the exterior medium must be characterized with regard to their temperature and opacity.

We now discuss the two domains in this particular problem.

1) First, inside the hot, opaque source where radiation can be considered as nearly
isotropic (f* ~ 0.5), the linear P; limit holds for both half-moment models since in this
limit

Pr~ lim (DLEL+DRER) = l(E++E—): lg (3.3)

T jEoias RUR R™R 3\7R R 3R :

The condition f* ~ 0.5 implies f ~ 0. We will assume for this model that radiation
can be considered isotropic for f < 0.5. It should be noticed that radiation is usually
considered nearly isotropic for f < 0.3 (the P; validity domain); we assume that it is
possible to extend this range to f < 0.5 without too much impact on the solution because,
for many applications, the anisotropic factor f is predominantly either close to 0 or 1.
The latter case will be handled next.

2) Within the cold, transparent medium, a cold equilibrium is assumed for the negative
half moments while the positive ones are strongly anisotropic due to the radiating source,
implying f* >> 0.5.

The exterior medium is assumed to be cold enough such that By, << E}; and ||Fg, || <<
| Fr, ™| (or indifferently Fp,~ << Fg,™ Vi = 1..3). Then Er ~ E}; and Fr ~ F}} lead
to f ~ f* and hence f >> 0.5. Finally, using these approximations

Pr=Dr"E} +Dr E; ~Dr(f")E} ~DL(f)ER. (3.4)
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It must be noticed now that the Eddington factor D% (f), given in (2.23)-(2.24) is
limited by construction to DE =1/3 when f* < 0.5, and since f* ~ f, this leads to the
P; closure when radiation is isotropic. This tensor then naturally makes the transition
from D}, =1/3 to D},(f). Thus the same full moment model is found to be valid inside
the hot, opaque medium and the cold one and is able to establish the transition. The
radiation field is hence fully described by this model, called here M;", which is written

ERr+V -Fr=coalT* - coER, (3.5)
1
EatFR +¢V - (DL(f) Eg) = —0Fg, (3.6)
with
1= x"(f) () -1faf
+ _
Dp(f) = —5——1d+ 5 72 (3.7)
and
82

X (f) = if f>0.5 and x(f) =1/3 elsewhere. (3.8)

14+6f++/1+12f—12f2

This four equation model gives equations for the full moments and for a range of the
anisotropy f € [0,1]. It should be noticed here that this reduction to a full-moment sys-
tem is only possible because the positive flux always radiates in the full flux direction,
whatever this direction is. With a classical splitting of the flux, where the positive com-
ponent of the flux is statically defined, such a reduction is not possible since incoming
and outgoing radiation cannot be distinguished.

This model describes radiation emitted by a source which is isotropic inside (P; must
be valid inside) and radiating into a exterior domain in a strongly anisotropic way. This
signifies that this exterior medium is not radiating much compared to the source, but
might for example absorb part of emitting radiation of the source provided that it does
not re-radiate towards the source. Moreover, if the exterior medium is too opaque or too
hot, the anisotropy factor will stay lower than 0.5 and the model will simply reduce to
P.

The domain of validity of M 1+ is then quite large. It will be valid in many applications
where the main interest is to compute the heat loss of a source by radiation in a non-
remitting medium, in particular for luminous flames and fires burning in ambient air and
for stars radiating into their thin atmospheres.

We will see in the next section that this model gives results very close to those obtained
by a RTE ray-tracing solver.

4. Numerical Results
4.1. A black hot sphere radiating into an infinite semi-transparent cold gas

The first case is a hot black sphere of radius 7 = 1 which emits at an intensity I, = 1 into
an infinite absorbing cold gas (7' = 0) of two different and small opacities o = 0.1, 0.01.
In terms of macroscopic quantities, we have inside the sphere: E%s = 2, in-‘cs = *+m,
ERS = 47 and FRS =0.

For this case the positive flux will remain positive and the negative quantities, which
vanish, do not need to be computed. Moreover, the exact value of J,, which here is
simply J; = 0, is used. The outgoing boundary conditions are 9, Er* = 0, BTFJIQ =0 at
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FIGURE 2. Comparison between 5 models for o = 0.1. Left: Radiative Energy. Right: Radiative
Flux.

r = 1.6, similarly 0, Fr = 0, 0,Fg = 0 for the full moment models, in order to simulate
an infinite domain.

We compare in Fig. 1, the steady states of the radiative energy, flux, and anisotropic
factor given by Ml1 /% 4o those obtained by the RTE solver for 0 = 0.1,0.01. Results are
in very good agreement for each of these quantities.

We compare in Fig. 3-2, both radiative energy and flux obtained by five models for

these opacities: RTE, M 11 / 2, My, P; and the new M 1+ . Results obtained by the RTE and

the M. 11 /% solvers were presented in the two previous figures. The full moment methods
My, P; and Mf are solved from inside the hot sphere since no boundary conditions can
be prescribed at r = 1, contrary to the RTE and the Ml1 /% solvers. M is in its range
of applicability and gives results almost as good as those of M 11 2 1t might be presumed
that the small difference between them comes from the difference of the boundary con-
ditions. In all cases, P; gives mostly wrong results (for ¢ = 0.01, the anisotropic factor
f = Fr/ER found by P; at r = 1.0 is around 5, meaning a speed of light five times
overestimated). Surprisingly, M; gives a good computation of the flux for all cases, but
a rough computation of the energy.
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FicURE 3. Comparison between 5 models for o = 0.01. Left: Radiative Energy. Right:
Radiative Flux.

These results valid the models and let presume that they will provide an accurate
description of radiative fields of the solar atmosphere, which presents the same main
characteristics of this simple geometry.

4.2. Computation of the radiation field of the solar atmosphere

The temperature and opacity profiles of the sun are taken from Stix (1989). These
values are obtained from model C of Vernazza et al. (1981) and are representative of
a quiet sun. The temperature and opacity profiles are truncated before the transition
layer to the corona, which is here considered as a zero density zone. Confronted with the
difficulty of determining mean absorption coefficients for the solar atmosphere, which are
needed to model the opacity, we obtained the opacity from the optical depth 7 at 500 nm
(O’ = (97'50()/(97“).

The interior of the sun is assumed to be opaque enough to be represented by a black
body emitting at 6910K, which is the temperature at 25 km below the surface. Outgoing
boundary conditions are identical to the previous case. In Fig 4, the Mfr in spherical
coordinates with spherical symmetry is solved and compared to the RTE ray tracing
solution for the solar atmosphere.

The radiative temperature computed by M1+ is coincident with the one computed by
the RTE solver close to the sun. Far away, the M 1+ model finds a different plateau value
(between 4960K and 4938K) from the RTE solver (between 4700K and 4650K). At
r = 6.97 x 108 m, the error in the radiative temperature from the M;" model, which finds
4950K instead of 4682K, is 5.72%. At r = 6.98 x 108 m, the error is 6%. The radiative
flux computed by both models presents, close to the sun, a small spike followed by a
smooth bump close to the surface which is due to the opacity profile. The error of the
flux computed by M17 is maximal at the top of the spike where it reaches 17%, while at
the top of the bump the error is around 10%. Outside this highly variable zone, the profile
of the radiative flux is computed with a precision of 5% by the M model. Moreover, it
should be noticed that, in this particular example, radiation is near isotropic (f ~ 0.5),
a condition in which the error introduced by M;" is maximal, but it remains as we can
see very admissible.
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FIGURE 4. Radiation field of the sun atmosphere. Left: Radiative and matter Temperatures.
Right: Radiative Flux.

5. Conclusion

A new three dimensional half moment model, called M 11 / 2, has been derived using a
dynamic definition of the half quantities and the maximum entropy closure. The direction
space is cut into two pieces according to the direction of propagation of the total flux,
at each time and position. This splitting allows the radiative pressure to be closed, using
the standard maximum entropy closure, with approximate constraints, but introduces
non-trivial border terms.

By assuming that radiation is isotropic in the plane perpendicular to the flux, P, ,
which seems admissible for a two-flux model, the radiative transfer equation has been
integrated on these moving half-directional spaces. The integration is difficult but leads
to small and simple expressions; the border terms account for the rotation needed to set
the directional space in the direction of the flux. The value of the intensity in P, must
be known, and a model for this quantity has been proposed.

An immediate application of this work has been presented: for the particular case of a
three dimensional hot, opaque source emitting into a non re-emitting medium, the half
moment model has been reduced to a new full moment model, called here M.

The model is here tested for the case of a hot one-dimensional Gaussian source radiating
into media of various opacities. Very good agreement has been shown between the RTE
and the M 11 /2 model independently of the opacity. The relevance and the correctness of
the closure has been shown, in one dimension, for a case theoretically similar to the solar
atmosphere.

The radiation field of a solar atmosphere with an approximate opacity has been com-
puted with the M;" model. The results of M;" are not as good as those presented in the
previous theoretical problem: the error is always around 5% for all unknowns, except in a
small transitional zone where the flux error reaches its maximal value of 17%. The solar
problem close to the surface, being near isotropic, is a case for which the accuracy of M 1+
should be lowest, but is nevertheless found to be admissible.
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